

Sunburst Design - SystemVerilog Verification

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

2 Days
70% Lecture, 30% Lab
Prerequisites (mandatory) - This is an advanced course using SystemVerilog that assumes
engineers have already an understanding or working knowledge of Verilog-HDL.

Course	Syllabus	
(~10 minute breaks near the top of each hour)

(Lab time is scheduled for "Lunch & Lab" and again near the end of the day)

This course may be customized by client companies on a WebEx conference call with Cliff Cummings.

Day One

SystemVerilog	Enhancements	&	Methodology	Overview		

 Verilog & SystemVerilog Keywords
 SystemVerilog Books & Resources
 SystemVerilog Enhancements Strategy & High-Level Methodology

Data	Types	&	Typedefs		

 Nets & Variables Fundamentals & Guidelines
 Blocking & Nonblocking Assignment Fundamentals & Guidelines
 SystemVerilog data types
 Enhanced literal numbers syntax
 Resolved & Unresolved types
 4-state & 2-state types
 Typedefs
 Near-Universal types
 SystemVerilog type usage guidelines
 Enumerated types
 Struct data type intro
 Type parameters
 Intro to the SystemVerilog program construct - and why you should avoid it.
 $unit & $root - Compilation units & separate compilation
 Packages & :: (package scope operator)
 SystemVerilog package strategies
 Strings
 Static & dynamic type-casting
 Random number generation: $random -vs- $urandom -vs- $urandom_range
 Simulation command aliases & switch definitions
 LABS: Multiple SystemVerilog types, typedefs, type-casting and logic labs

SystemVerilog	Operators,	Loops,	Jumps.	Intro	to	Logic‐Specific	Processes,	Unique	&	
Priority	‐	full_case	&	parallel_case.	Enhanced	functions	&	tasks		

Includes materials from Cliff's SNUG 2016 & SNUG 1999 award-winning papers on these topics.
Also includes materials from Cliff's SNUG 2005 paper on priority & unique.

 New SystemVerilog operators
 Enhanced loops & jumping statements
 Logic specific processes (always_type blocks) document designer intent
 always_comb / always_latch / always_ff
 Added design checks using always_type blocks
 always @* -vs- always_comb
 void functions
 always_comb & void functions
 Combinational sensitivity
 Design encapsulation through void functions
 always_ff for DDR? (SystemVerilog-2009 enhancement)
 full_case parallel_case, "the Evil Twins"
 What is full_case?
 What is parallel_case?
 unique & priority case
 unique & priority if
 unique0 (SystemVerilog-2009 enhancement)
 SystemVerilog enhancements to tasks & functions
 `timescale directive
 SystemVerilog timeunit & timeprecision
 * LABS: simple SystemVerilog combinational and sequential logic labs

Implicit	.*	and	.name	Port	Instantiation		

Includes materials from Cliff's SNUG 2007 award-winning paper on implicit port enhancements.
 Verilog-2001 positional & named ports
 SystemVerilog .* implicit ports
 SystemVerilog .name implicit ports
 Implicit port connection rules & comparisons - includes IEEE 1800 latest updates
 Strong port-type checking
 New debugging techniques - automatic expansion of .* ports - auto-schematic generation
 Block-level testbenches with implicit ports
 Advantages & disadvantages
 LABS: implicit port instantiation labs

Day Two

Nonblocking	Assignments,	Race	Conditions	&	SystemVerilog	Event	Scheduling		

Includes materials from Cliff's SNUG 2002 & SNUG 2000 award-winning papers these topics.
Also includes materials from Cliff's SNUG 2006 paper on SystemVerilog event regions.

 Verillog-2001 Event Scheduling
 8 guidelines for RTL coding & nonblocking assignments
 SystemVerilog enhanced scheduling - includes IEEE 1800 latest updates
 Verilog -vs- SystemVerilog race conditions
 Scheduling of new SystemVerilog commands
 * Blocking & Nonblocking Assignment Details
 * Mixed RTL & Gate simulations

SystemVerilog	FSM	Design	Techniques		
- Includes materials from Cliff's SNUG 2019, SNUG 2003, ICU 2002 & SNUG 2000 award-winning
papers on these topics.

 FSM coding goals
 Moore & Mealy
 Binary & Onehot
 ASIC -vs- FPGA FSM design
 Review proven FSM coding styles
 One always block - avoid this
 Two always blocks - recommended
 Three always blocks - recommended
 Onehot case(1'b1) - recommended
 Onehot parameters - avoid this
 Output encoded - recommended
 Coding & synthesis efficiency
 SystemVerilog FSM enhancements
 Advanced enumerated types
 LABS: SystemVerilog FSM design labs

Structs,	Unions,	Packed	&	Unpacked	Arrays	

 Structs & assignment patterns
 Packed & unpacked arrays
 Array indexing
 Structs & packed structs
 Unions & packed unions

 	

Interfaces	
- Interfaces are a powerful new form of abstraction and this section details how they work for design
and verification. This section also discusses when and when not to use interfaces. Virtual interfaces are
described after the introduction of virtual classes and virtual methods in the UVM training class.

 Interface usage overview
 Introduction to generic interfaces
 Interfaces -vs- records
 How interfaces work
 4 requirements for good interface usage
 Interfaces - legal & illegal usage
 Interface constructs
 Interface modports
 LABS: multiple interface and interface-protocol labs

SVA	‐	SystemVerilog	Assertions		
Includes materials from Cliff's SNUG 2016 & SNUG 2009 SVA papers. Both were voted Best Paper
1st Place at their respective conferences.

 What is an assertion? / Who should add assertions?
 Assertion benefits - bug detection efficiency
 SystemVerilog assertion types
 SystemVerilog immediate assertions
 SystemVerilog concurrent assertions
 Assert & cover properties & labels
 Properties and assert property
 Overlapping & non-overlapping implications
 Edge testing functions
 Sequences
 Vacuous success
 Property styles
 Reduced assertion coding effort using macros
 Macros with default arguments (SystemVerilog-2009 update)
 Assertion coding style efficiency benchmarks
 SystemVerilog assertion system functions
 Sampled value functions
 Assertion severity tasks
 Assertion and coverage example of an FSM design
 Binding SVA to an existing model
 Bind command details and guidelines
 LABS: SystemVerilog Assertions with synchronous FIFO design

