

Sunburst Design - Advanced Universal Verification Methodology

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

3 Days
70% Lecture, 30% Lab

Prerequisites (mandatory) - This is an advanced UVM verification course that assumes engineers
have already taken UVM training or have 2 years of UVM experience.

Course	Syllabus	
(~10 minute breaks near the top of each hour)

(Lab time is scheduled for "Lunch & Lab" and again near the end of the day)

This course may be customized by client companies on a WebEx conference call with Cliff Cummings.

Day One
UVM	Resources	&	Introduction	

 UVM resources
 Industry trends - UVM verification
 Industry trends - debug time related to project schedule

Review	of	Advanced	Techniques	Used	in	UVM	Base	Classes	

 Up-casting and down-casting (used extensively in UVM verification environments)
 Local & protected (hiding) in UVM Base Class Library (BCL)
 Static class methods in UVM BCL
 Extern methods in UVM BCL
 Singleton pattern and usage in UVM BCL

Review	of	Best	UVM	Reporting	Macro	Techniques	
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM messaging.

 UVM messaging messages & macros - emphasis on macros
 UVM verbosities - why you should avoid using UVM_LOW verbosity
 UVM verbosity usage guidelines

File	Guards,	Packages	&	Command	File	Strategies	for	Large	Projects	
 Importing from packages - multiple techniques
 SystemVerilog-2009 - importing packages in module headers
 SystemVerilog-2009 - importing and exporting nested packages
 File guards & recommended naming convention
 File guards for macro files - compile in command files first
 Incdir command options - compile in command files second
 Nested command files - compile in command files third
 File guards in interface files
 File guards in package files
 Each class a separate file
 Extern methods in class files
 Include class files into package files
 Keep packages out of the global space
 Compiling packages

Advanced	uvm_resource_db	Techniques	
Includes materials from Cliff's DVCon 2023 paper on UVM Resources the uvm_resource_db API.

 Comparing the OVM set_config_* commands, uvm_config_db API and uvm_resource_db API
 Deep dive into how the set_config_* commands work and their disadvantages
 Why engineers should not use assert on uvm_config_db#()::get commands
 Why the OVM set_config_* commands were deprecated from UVM
 Deep dive into the UVM resources database
 Why 95%+ of engineers use uvm_config_db and why they should use uvm_resource_db
 The uvm_config_db API and why it has limitations
 The uvm_resource_db and how it removes the uvm_config_db limitations
 Favorable experiences using uvm_resource_db on a recent, huge verification project
 LAB: uvm_config_db and uvm_resource_db usage (Full UVM self-checking testbench)

Advanced	Virtual	Interfaces	Techniques	I	
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

 Common virtual interface styles
 Style #1 - DUT interface hierarchical connections
 Style #2 - DUT interface port connections

Advanced	Virtual	Interfaces	Techniques	II	
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

 Harness / Bind virtual interface styles
 Style #3 - Larson-Harness bind technique
 Style #4 - Bind-Harness-dut_if connections
 Style #5 - Bind-dut_if connections - New technique shown at SNUG 2021
 LAB: Bind-dut_if connections testbench (Full UVM self-checking testbench)

UVM	Testbench	Environment	with	Config	Objects	
 Config objects store configuration information in components
 Config objects extend from uvm_object
 Most common usage: tests, environments, agents
 Active and passive agents
 Enabling functional coverage component
 Passing configuration information from test to environment to agent
 Multi-part config object example
 LAB – FIFO Gray Code Pointer - (Full UVM self-checking testbench)

SystemVerilog	Bind	Command	

 Bindfile input ports
 Bindfile connected using .* port connections
 Bind command placed in the testbench
 How the bind command works
 Bindfile connected using combination of .* and named ports
 Bindfile signal declarations?
 Bind command placed in a second top-level dummy module

Day Two
Review	of	UVM	Transaction	Definition	Types	&	Sequence	Definition	Types	
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM transactions.

 Why classes -vs- structs?
 do_copy, do_compare and other do_methods
 Field macro limitations
 UVM sequence body task
 pre_start() -vs- pre_body()
 start_item(tx) - finish_item(tx)
 `uvm_do macros
 Benchmarks

Review	of	UVM	Scoreboard	Style	#1	
Includes materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

 SystemVerilog queues
 SystemVerilog mailboxes
 uvm_tlm_fifo
 uvm_tlm_analysis_fifo
 Scoreboard architecture style #1
 Pre-coded scoreboard wrapper and predictor
 Extern calc_exp function - requires user to complete this function
 Pre-coded comparator with 2 uvm_tlm_analysis_fifos
 LAB – UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab)
 LAB – UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab)

Review	of	Multiple	Analysis	Implementation	Port	Techniques	
Includes more materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

 Scoreboard architecture style #2
 Multiple analysis implementation ports
 `uvm_analysis_imp_decl macros
 LAB – UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab)

Reactive	Stimulus	Techniques	Using	the	Agent‐Sequencer	
Includes materials from Cliff's DVCon 2020 award-winning paper on Reactive Stimulus.

 Explanation of the reactive driver
 Explanation of the reactive sequencer
 Explanation of the reactive sequence
 Sampling output fields into the response transaction
 Common response coding mistake
 VIP considerations
 LAB: Sequencer-driver reactive stimulus testbench (Full UVM self-checking testbench)

Advanced	Virtual	Sequence	Techniques	

Includes materials from Cliff's DVCon 2023 paper on UVM Resources the uvm_resource_db API.
 Three virtual sequencer techniques are shown - advantages / disadvantages described
 Virtual sequence that retrieves subsequencer handles stored in a virtual sequencer
 Test_base with init_vseq() method to store subsequencer handles in the vseq_base
 Using the uvm_resource_db to retrieve subsequencer handles directly
 LABS: Equivalent virtual sequence labs using (1) Virtual sequencer, (2) init_vseq() method, (3)

Using the uvm_resource_db (Three Full UVM self-checking testbenches)

Day Three
	Review	of	Clocking	Blocks	&	Verification	Timing	
Includes materials from Cliff's SNUG 2016 paper on UVM verification timing techniques.

 Testbench stimulus/verification vector timing strategies
 #1step sampling
 Clocking blocks
 Clocking skews
 UVM usage of clocking blocks in an interface
 UVM driver timing using clocking blocks
 UVM signal sampling using clocking blocks
 3 important timing techniques (#1 - applying stimulus, #2 & #3 sampling for verification)
 LABS - All of the full UVM self-checking labs use these clocking block techniques

Review	of	UVM	Factory	Overrides	
Includes materials from Cliff's SNUG 2012 paper on the UVM factory and overrides.

 Introduction to factory overrides
 Review of factory override by_type
 Review of factory override by_inst

UVM	Parameterized	DUT	Interface	‐	Fundamental	Technique	

 Passing top-module & DUT parameters to the UVM testbench
 `uvm_component_param_utils
 `uvm_object_para_utils
 Testbench components modified for parameterized testing
 Testbench transaction/sequences modified for parameterized testing
 +UVM_TESTNAME & factory modifications / setup
 Why this technique is tedious
 LAB: UVM parameterized DUT interface (Full UVM self-checking testbench)

UVM	Parameterized	DUT	Interface	‐	Advanced	dut_max_if	Technique	

 DUT Max Interface Technique - simplifies testing of parameterized designs
 dut_max_if / dut_if - connecting different bus sizes
 Bind dut_if inside of DUT
 max_defines.sv file
 DUT information struct: dut_info_s
 Port coercion
 Trick to set proper printing widths
 LAB: UVM parameterized DUT-Max interface (Full UVM self-checking testbench)

Advanced	Reactive	Stimulus	Techniques	Using	the	Monitor	and	uvm_tlm_analysis_fifo	
Includes materials from Cliff's DVCon 2021 award-winning paper on Advanced Reactive Stimulus.

 Sampling the stimulus response from the same agent
 Sampling the stimulus response from a 2nd agent
 Two additional reactive stimulus techniques
 uvm_tlm_analysis_fifo in the environment
 Base_sequence using blocking-get to retrieve output sequence from uvm_tlm_analysis_fifo
 Base_sequence triggers a response event
 Using pre_start() -vs- pre_body() method
 Second technique using config objects and a virtual sequencer
 LAB: Multi-agent reactive stimulus testbench (Full UVM self-checking testbench)

Additional	Advanced	Techniques	

 SystemVerilog-2012 interface classes
 DUT error injection without recompiling the DUT
 DUT error injection using bindfile-force technique
 Multi-agent packet example
 LAB: DUT error injection using bindfile (Full UVM self-checking testbench)
 LAB: Multi-agent packet example (Full UVM self-checking testbench)

