
Course Syllabus

(~10 minute breaks near the top of each hour)
(Lab time is scheduled for "Lunch & Lab" and again near the end of the day)

Day One

(1) SystemVerilog Features for Advanced Digital Design

Includes a few short slides to provide a quick review of SystemVerilog resources available to
designers.

 Verilog & SystemVerilog Keywords
 SystemVerilog Books & Resources-Includes free IEEE PDF version of SystemVerilog

Standard
 SystemVerilog Enhancements Strategy & High-Level Methodology
 You don't have to swallow the whole SystemVerilog elephant all at once.

(1a) Review of Important Verilog Coding Guidelines
Important features that most self- and poorly-taught engineers do not understand about SystemVerilog
enhancements, and the RTL design issues they are intended to fix. The features are fully explained
with historical context to help even experienced designers to avoid common RTL design mistakes.

 reg -vs- wire (the reg-mistake explained by Verilog developer, Phil Moorby).
 blocking -vs- nonblocking usage to avoid RTL simulation race conditions.
 New useful SystemVerilog topics that all designers should understand - each of these topics is

required for advanced RTL design techniques shown later in the course:
o logic type - new near-universal type - versus wire type
o Only use wire-type for multi-driver and resolved logic designs
o Typedefs and recommended naming conventions to enhance RTL design
o Multi-field structs for enhanced design documentation and design reuse
o Enumerated types (advanced RTL design styles, especially opcodes and FSM design)
o Basic SystemVerilog packages for designers - especially useful for FSM design

 LABS: Multiple SystemVerilog types, typedefs, type-casting and logic labs

(2) Latches & Priority Encoders

Improving synthesis is defined as faster clock speeds, smaller logic or both. Detailed description of
two synthesis problem areas: latches and priority encoders. Detailed description of the synthesis
directives "full_case" and "parallel_case", and SystemVerilog replacements, priority & unique.

 Improve synthesis? Make tools work harder or change RTL code? Changing RTL works best.
 Improve synthesis? Think hardware or creative abstract algorithms? Think hardware!
 always blocks & sensitivity lists
 V2K1 @* and comma-separated sensitivity lists
 Problem area #1 - Generating unexpected latches
 Why do fully coded case statements with case-default still give latches?
 Using initial default assignments to avoid latches and improve synthesis - always works
 Latch inference reports and intentional latch naming conventions

 Problem area #2 - Generating large-slow priority encoders
 Priority encoders from if-else testing of unrelated logic
 Why can case statements produce priority encoders?
 "full_case parallel_case," the "evil twins!" - Causes simulation-synthesis mismatches
 SystemVerilog priority & unique - usage guidelines to avoid simulation-synthesis mismatches
 Summary of latch & priority encoder guidelines

(3) Combinational Logic Design Techniques I - Synthesizable Coding Styles

RTL coding styles for combinational logic, including problems and inefficiencies that arise from poor
coding styles. Includes good Verilog-2001 (V2K1) and much better SystemVerilog combinational
logic enhancements. Explains reasons behind SystemVerilog enhancements. Numerous combinational
labs demonstrate many potential problem areas related to common combinational coding styles.

 Throughout this section - emphasis on fastest designs / smallest area / coding styles to avoid
 New SystemVerilog operators
 Continuous assignments
 Logic specific processes (always_type blocks) document designer intent
 always_comb / always_latch / always_ff
 Added design checks using always_type blocks - unknown by most RTL designers
 always @* -vs- always_comb and why always_comb is better
 void functions to document larger combinational blocks
 Best coding style of huge combinational logic? always_comb & void functions
 Combinational sensitivity issues with always @*
 Design encapsulation through void functions
 LABS: Combinational RTL labs I

(4) Implicit .* and .name Port Instantiation

- Implicit port connections can reduce top-level ASIC and FPGA coding efforts by more than 70% and
simultaneously enforce greater port type checking. Many engineers fear debugging .* designs, but this
section shows how to expand ports for debug and why .* enforces better design styles.

 Verilog-2001 positional & named ports
 SystemVerilog .* implicit ports
 SystemVerilog .name implicit ports
 Implicit port connection rules & comparisons - includes IEEE 1800 latest updates
 Strong port-type checking
 How .* fixes old Verilog port connection problems
 New debugging techniques - automatic expansion of .* ports - auto-schematic generation
 Synthesis approach - analyze subblocks first then analyze upper blocks.
 Advantages & disadvantages
 LAB: implicit port instantiation labs

Day Two

(5) Combinational Logic Design Techniques II - Synthesizable Coding Styles

Additional RTL coding styles for combinational logic, including more problems and inefficiencies that
occur from poor coding styles. More combinational labs demonstrate many potential problem areas
related to common combinational coding styles.

 Throughout this section - emphasis on fastest designs / smallest area / coding styles to avoid
 Synthesizable and non-synthesizable Verilog constructs
 Bitwise -vs- logical operators
 Tasks, functions, void functions & automatic void functions
 Tri-state drivers
 Bi-directional busses
 LABS: Combinational RTL labs II

(6) Sequential Logic Design Techniques - Synthesizable Coding Styles

This section covers coding styles for sequential logic. Common sequential RTL styles that are
problematic. Inferring efficient designs using adders and other large resources is also detailed. Also
discusses and includes advantages and disadvantages of instantiation.

 Throughout this section - emphasis on fastest designs / smallest area / coding styles to avoid
 Edge-sensitive sensitivity list
 Basic asynchronous & synchronous resets
 Additional flip-flop coding styles
 Poor synthesis results from mixing flipflop styles in the same always block
 Simulation issue with async set & reset flipflop coding styles
 Simulation/synthesis differences
 Simulation efficiency
 Register banks
 Memories
 Instantiating Blocks
 LABS: Sequential RTL labs
 NOTE - One of the Labs is a counter with diagnostic carry inputs to accelerate testing of the

16-bit counter.

(7) Advanced Design Topics - Resource Sharing / Register Rebalancing / Clock Gating / Multi-
Cycle Paths / High Speed Design

Multiple advanced topics are shown in this section.

 Large resources
 Resource sharing
 Register re-balancing
 Re-balancing techniques (1) Automated (2) Manual RTL coding
 Latency & throughput design
 Latency & throughput tradeoffs
 Introductory clock-gating techniques
 High-level clock gating / hand coded

 Low-level clock gating / tool insertion
 Multi-cycle paths and where they are used

(8) Synchronous & Asynchronous Reset Design

Detailed material for selection and usage of synchronous and asynchronous reset design taken from
actual design experiences.

 Synchronous vs. asynchronous resets
 Reset removal metastability
 Asynchronous reset synchronizer circuitry
 Reset distribution trees and techniques
 Reset Domain Crossing & synchronization

(9) Introduction to SystemVerilog Interfaces

Interfaces are a powerful new form of abstraction and this section details how they work for design and
verification. This section also discusses when and when not to use interfaces.

 Interface usage overview
 Interfaces -vs- structs
 How interfaces work
 4 requirements for good interface usage
 Interfaces - legal & illegal usage
 Interface constructs
 Interface modports
 LAB: simple interface testbench lab

(10) Finite State Machine (FSM) Design

Fundamental and advanced coding styles for state machines. Includes important considerations for
coding designs for easy debug and optimal synthesis. Advantages of putting encodings into a package.
Why parameter or enum-type state definitions are used instead of `define. Binary encoded, and
efficient onehot coding styles are presented. FSMs with combinational outputs and sequential outputs
are also presented.

 Introduction to state machines and 7 different FSM design styles
 Moore & Mealy styles
 Three always block coding style - registered outputs
 Two always blocks implementation - combinational outputs
 Output assignments using always blocks and continuous assignments
 One always block implementation - Inefficient - avoid this style
 Four always block coding style - registered outputs - for improved synthesis results
 Indexed one-hot implementation - registered outputs
 Encoded one-hot implementation - Inefficient - avoid this style
 Output encoded style - registered outputs
 Modified Mealy FSM to register outputs
 Efficiencies

 Labs: State machine labs experimenting with different coding styles and the priority / unique
for synthesis

Day 3

(11) Multi-clock Clock Domain Crossing (CDC) using SystemVerilog

Very advanced design techniques from Cliff's award-winning presentations on the efficient
implementation of multi-clock CDC techniques. These materials are not specific to SystemVerilog but
solutions are shown using SystemVerilog syntax (advanced techniques that all design engineers should
know - the techniques you did not learn in college).

 Metastability & synchronizers - synchronizing 1-bit signals
 Passing multiple control signals - synchronizing multi-bit signals or busses

o Consolidation
o Edge detection
o Controlled synchronization - multicycle path formulations (MCP)
o FIFO synchronizer
o Gray codes & Gray code counters

 Clock Domain Recovery
 Design partitioning - design & synthesis techniques

o Naming conventions
o Synthesis scripting & timing analysis issues

 Simulation issues
o X-propagation issues
o Synopsys command for SDF files
o Multi-SDF files
o ASIC/FPGA vendor cells and models
o Simulation model to expose synchronization problems

 LAB: MCP controlled synchronization lab

(12) Multi-clock FIFO Design using SystemVerilog

Very advanced design techniques from Cliff's award-winning presentations on the efficient
implementation of multi-clock FIFO designs. These materials are not specific to SystemVerilog but
solutions are shown using SystemVerilog syntax (advanced techniques that all design engineers should
know). Engineers have told Cliff that this FIFO from Cliff's paper is used in many commercial designs.

 Multi-clock FIFO design - large section on design and FIFO issues
 Two different Gray code counter styles
 LAB: 2-clock FIFO lab

(13) Design for Reuse / IP Design

Various techniques and recommendations related to IP design and design reuse.

 Design reuse - start simple / migrate to reuse
 Another look at SystemVerilog interfaces
 Design for reuse for IP:

o Scale-ability
o Modularity / partitioning

 Parameterizable designs
o Smart use of parameters
o generate statements (added to Verilog-2001 and over-used)
o Arrays of instance (part of Verilog-1995 / not widely known / better and simpler syntax

for contiguous range of logic such as instantiating IO pads for a bus / easily
parameterized / better and easier syntax than generate statements)

o Comparing generates to arrays of instance - pros & cons of each
 Guidelines

(14) Design For Test (DFT) Techniques

Teach the fundamentals of Design For Test (DFT). This section on DFT teaches engineers the basics
of DFT and the right questions to ask about the DFT techniques used in a design.

 What is DFT?
 DFT modes of operation
 RTL coding for DFT
 DFT steps
 DFT - where can it go wrong?
 Reset considerations for DFT
 Scan for multi-clock designs

