A
-)
—Sunburst Design—

Sunburst Design - Universal Verification Methodology

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

4 Days
70% Lecture, 30% Lab
Intermediate-Advanced Level

Prerequisites (mandatory) - This is an advanced verification course that assumes engineers already
have a good working knowledge of both Verilog & SystemVerilog.

Course Syllabus
(~10 minute breaks near the top of each hour)
(Lab time is scheduled for "Lunch & Lab' and again near the end of the day)

This course may be customized by client companies on a WebEx conference call with Cliff Cummings.

Day One

UVM Resources & Introduction

Classes & Class Variables

e Intro to OOP using classes
Class handles & null handles
Garbage collection
Built-in & user-defined constructors
Classes & class extension (inheritance)
this & super keywords & usage
Methods & method extension
Up-casting and down-casting (used extensively in verification environments)
Local & protected (hiding)
Static class methods
Extern methods
Singleton pattern and usage

UVM Overview First Pass & uvmtb_template files

Each of the concepts in this section will be taught a second time with greater detail in later sections.
e Overview of UVM component & transaction classes

Basic top module with DUT, dut if and UVM testbench classes

Overview of UVM tests & testbench components

Driver converts transactions into timed "pin-wiggles" and drives them to the dut if

Monitor samples dut_if "pin-wiggles" and converts them back into a transaction

Scoreboard predict, compare and report

Basic UVM display commands

Running UVM tests

UVM phases - top-down & bottom-up - first pass

Phase names match method names

UVM starting & stopping tests - raised & dropped objections

uvmtb_template files used as a starting point for all UVM testbench development

LAB - UVM Common Errors

LAB - UVM First Testbench - Testing a Counter (Full UVM self-checking testbench #1)

Virtual Classes, Virtual Methods and Virtual Interfaces
Includes materials from Cliff's SNUG 2018 & SNUG 2009 award-winning papers on virtual classes,
methods, interfaces.

e Virtual classes (abstract classes)
Virtual methods
Overriding virtual methods - polymorphism
Pure virtual methods
Virtual interfaces
3 requirements for virtual interface usage
Tying module ports to virtual interfaces
Passing virtual interface handles through class constructors
(UVM only) storing virtual interface handles into a database
Static interfaces -vs- virtual interfaces

Introduction to Constrained Random Testing
e Directed -vs- random testing
rand & randc class variables
pre_randomize(), randomize() & post randomize() class methods
randomize ... with
rand_mode()
randcase usage for classes and procedural code
Constraints
Using inside & dist keywords

Introduction to Functional Coverage
e Covergroups
Coverpoints
Coverpoint bins & auto-bins
Cross-coverage
Covergroup sampling techniques
LABS - Random Variables & Randomization (Full UVM self-checking testbenches #2-3)
LAB - Constrained Random Stimulus (Full UVM self-checking testbench #4)

UVM Base Classes & Reporting (UVM print/display commands)

Includes materials from Cliff's SNUG 2014 award-winning paper on UVM messaging.
e UVM messaging methods
e UVM messaging macros
e convert2string()

e UVM verbosities
UVM verbosity usage guidelines
LAB - UVM Messaging

Day Two

UVM Transaction Base Classes, Sequences & Tests

Includes materials from Cliff's SNUG 2014 award-winning paper on UVM transactions.
e Dynamic arrays

Associative arrays

Why classes -vs- structs?

‘uvm_object_utils macros

Standard transaction methods

do_copy, do_compare and other do_methods

Field macros

Randomizable data members

Randomizable knobs

Randomization constraints

UVM sequence body task

start_item(tx) - finish_item(tx)

‘uvm_do macros

randomize() the transaction

randomize() the transaction with inline constraints

UVM sequences of uvm_sequence item and uvm_sequence

Running UVM tests

Top Module, DUT and Config Storage Techniques

Top module

DUT (Design Under Test)

DUT Interface

Connecting DUT to DUT interface

DUT interface handle

uvm_config_db#(type) set/get (newer database commands)

set_config * / get config * (older storage commands)
Virtual interfaces for verification
LAB - UVM Agent (Sqr-Drv-Mon) (Full UVM self-checking testbench #5)

UVM Testbench Environment / Agent / Sequencer / Driver / Monitor

Includes materials from Cliff's SNUG 2018 award-winning paper on UVM analysis ports.
e ‘uvm_component utils macros

UVM components connected through ports & exports

Testbench driver (get-port configuration)

Managing the virtual interface - config table - required dynamic casting

Testbench sequencer (get-export configuration)

Testbench agent & environment

Active and passive agents

uvm_resource db#(type) set/read by name/read by type (newer database commands)

UVM analysis ports

Analysis port broadcast command

UVM monitors with analysis ports

uvm_subscriber with analysis export

Connecting a coverage collector using an analysis export

LAB — FIFO Gray Code Pointer - (Full UVM self-checking testbench #6)

UVM Scoreboards - Part I
Includes materials from Cliff’'s SNUG 2013 paper on UVM scoreboard architectures.

SystemVerilog queues

SystemVerilog mailboxes

uvm_tlm_fifo

uvm_tlm_analysis_fifo

What is the job of the scoreboard

Scoreboard architecture style #1

Pre-coded scoreboard wrapper and predictor

Extern calc_exp function - requires user to complete this function

Pre-coded comparator with 2 uvm_tlm_analysis_fifos

LAB — UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab #7)
LAB — UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab #8)

Day Three
UVM Scoreboards - Part II
Includes more materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

Scoreboard architecture style #2

Multiple analysis implementation ports

‘uvm_analysis_imp_decl macros

LAB — UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab #9)

Fork-Join Enhancements & Advanced UVM Sequence Generation
Includes materials from Cliff's DVCon 2016 paper on UVM virtual sequences.

New SystemVerilog fork-join processes

UVM virtual sequences

Virtual sequencers & virtual sequences - requirements
m_sequencer, p_sequencer, uvm_declare p sequencer
Virtual sequence base class details

Common test_base

Starting virtual sequences

Multi-bus virtual sequencer example

LAB - Virtual Sequencer & Sequences

Clocking Blocks & Verification Timing
Includes materials from Cliff's SNUG 2016 paper on UVM verification timing techniques.

Testbench stimulus/verification vector timing strategies
#1step sampling
Clocking blocks

Clocking skews

Default clocking block cycles

Clocking block scheduling

UVM usage of clocking blocks in an interface

UVM driver timing using clocking blocks

UVM signal sampling using clocking blocks

LABS - All of the self-checking labs use these clocking block techniques

Transaction Level Modeling (TLM) Basics

TLM ports & exports

Why "ports" and "exports"

TLM put, get and transport configurations
Transaction-level control flow / data flow / transaction type
Put configurations

Get configurations

Transport configurations

UVM Factory & Constructors

Includes materials from Cliff's SNUG 2012 paper on the UVM factory and overrides.
e UVM factory basics

Why is a factory used in UVM

What is needed to use the factory

new() -vs- type id::create() construction

Component and data lookup from the factory

Running without re-compilation

Tests can make substitutions without changing the testbench source code

Introduction to factory overrides

Day Four

Constrained Random Testing and Functional Coverage Part II
Code coverage -vs- functional coverage

Covergroups & coverpoints - part 2

Auto-bins & user-named bins

Cross coverage

Covergroup.sample() method

Transition bins

Coverage options & coverage capabilities

Comparing cover to covergroup coverage

LAB — UVM Functional Coverage - (Full UVM testbench lab #10)

UVM Register Abstraction Layer (RAL)
e Register package resources
e Why use the register package?
e Register models & memories
e Register model definition: fields / registers / blocks / maps

Register adapter & methods - derivative of uvm_object

Register model - derivative of uvm_component

Setting the model sequencer handle

Predictor - derivative of uvm_component

The RAL API

Built-In register sequences

uvm_reg mem_built in seq type & handle declaration

Setting the seq.model & seq.tests

Executing the seq.start(null)

LABS — UVM 4-Register Design (no RAL) - (Full UVM testbench lab #11)
LABS — UVMREG 4-Register Design (using RAL) - (Full UVM testbench lab #12)

