A
- )
—Sunburst Design—

Sunburst Design - Advanced Universal Verification Methodology

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

3 Days
70% Lecture, 30% Lab

Prerequisites (mandatory) - This is an advanced UVM verification course that assumes engineers
have already taken UVM training or have 2 years of UVM experience.

Course Syllabus
(~10 minute breaks near the top of each hour)
(Lab time is scheduled for "Lunch & Lab" and again near the end of the day)

This course may be customized by client companies on a WebEx conference call with Cliff Cummings.

Day One
UVM Resources & Introduction
e UVM resources
e Industry trends - UVM verification
e Industry trends - debug time related to project schedule

Review of Advanced Techniques Used in UVM Base Classes
e Up-casting and down-casting (used extensively in UVM verification environments)
Local & protected (hiding) in UVM Base Class Library (BCL)
Static class methods in UVM BCL
Extern methods in UVM BCL
Singleton pattern and usage in UVM BCL

Advanced uvm_resource_db Techniques

Includes materials from Cliff's To-Be-Published paper on the uvm_resource_db and virtual sequences.
e Comparing the OVM set_config_* commands, uvm_config_db API and uvm_resource_db API

Deep dive into how the set config * commands work and their disadvantages

Why engineers should not use assert on uvm_config_db#()::get commands

Why the OVM set_config_ * commands were deprecated from UVM

Deep dive into the UVM resources database

Why 95%+ of engineers use uvm_config_db and why they should use uvm_resource db

The uvm_config_db API and why it has limitations

The uvm_resource db and how it removes the uvm_config db limitations

Favorable experiences using uvm_resource db on a recent, huge verification project

LAB: uvm_config_db and uvm_resource db usage (Full UVM self-checking testbench)



Review of Best UVM Reporting Macro Techniques
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM messaging.

UVM messaging messages & macros - emphasis on macros
UVM verbosities - why you should avoid using UVM_LOW verbosity
UVM verbosity usage guidelines

File Guards, Packages & Command File Strategies for Large Projects

Importing from packages - multiple techniques
SystemVerilog-2009 - importing packages in module headers
SystemVerilog-2009 - importing and exporting nested packages
File guards & recommended naming convention

File guards for macro files - compile in command files first
Incdir command options - compile in command files second
Nested command files - compile in command files third

File guards in interface files

File guards in package files

Each class a separate file

Extern methods in class files

Include class files into package files

Keep packages out of the global space

Compiling packages

Review of UVM Transaction Definition Types & Sequence Definition Types
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM transactions.

Why classes -vs- structs?

do_copy, do_compare and other do_methods
Field macro limitations

UVM sequence body task

pre_start() -vs- pre_body()

start_item(tx) - finish_item(tx)

‘uvm_do macros

Benchmarks

UVM Testbench Environment with Config Objects

Config objects store configuration information in components

Config objects extend from uvm_object

Most common usage: tests, environments, agents

Active and passive agents

Enabling functional coverage component

Passing configuration information from test to environment to agent
Multi-part config object example

LAB — FIFO Gray Code Pointer - (Full UVM self-checking testbench)



Day Two
Review of UVM Scoreboard Style #1
Includes materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

SystemVerilog queues

SystemVerilog mailboxes

uvm_tlm_fifo

uvm_tlm_analysis_fifo

Scoreboard architecture style #1

Pre-coded scoreboard wrapper and predictor

Extern calc_exp function - requires user to complete this function

Pre-coded comparator with 2 uvm_tlm_analysis_fifos

LAB — UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab)
LAB — UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab)

Review of Multiple Analysis Implementation Port Techniques
Includes more materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

Scoreboard architecture style #2

Multiple analysis implementation ports

‘uvm_analysis_imp_decl macros

LAB — UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab)

SystemVerilog Bind Command

Bindfile input ports

Bindfile connected using .* port connections

Bind command placed in the testbench

How the bind command works

Bindfile connected using combination of .* and named ports
Bindfile signal declarations?

Bind command placed in a second top-level dummy module

Advanced Virtual Interfaces Techniques I
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

Common virtual interface styles
Style #1 - DUT interface hierarchical connections
Style #2 - DUT interface port connections

Advanced Virtual Interfaces Techniques II
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

Harness / Bind virtual interface styles

Style #3 - Larson-Harness bind technique

Style #4 - Bind-Harness-dut_if connections

Style #5 - Bind-dut_if connections - New technique shown at SNUG 2021
LAB: Bind-dut _if connections testbench (Full UVM self-checking testbench)



Reactive Stimulus Techniques Using the Agent-Sequencer
Includes materials from Cliff's DVCon 2020 award-winning paper on Reactive Stimulus.
e Explanation of the reactive driver
Explanation of the reactive sequencer
Explanation of the reactive sequence
Sampling output fields into the response transaction
Common response coding mistake
VIP considerations
LAB: Sequencer-driver reactive stimulus testbench (Full UVM self-checking testbench)

Advanced Virtual Sequence Techniques

Includes materials from Cliff's To-Be-Published paper on the uvm_resource_db and virtual sequences.
e Three virtual sequencer techniques are shown - advantages / disadvantages described

Virtual sequence that retrieves subsequencer handles stored in a virtual sequencer

Test _base with init_vseq() method to store subsequencer handles in the vseq base

Using the uvm_resource db to retrieve subsequencer handles directly

LABS: Equivalent virtual sequence labs using (1) Virtual sequencer, (2) init_vseq() method, (3)

Using the uvm_resource db (Three Full UVM self-checking testbenches)

Day Three
UVM Parameterized DUT Interface - Fundamental Technique
e Passing top-module & DUT parameters to the UVM testbench
e ‘uvm_component param_utils
e ‘uvm object para utils
e Testbench components modified for parameterized testing
e Testbench transaction/sequences modified for parameterized testing
e +UVM TESTNAME & factory modifications / setup
e Why this technique is tedious
e [LAB: UVM parameterized DUT interface (Full UVM self-checking testbench)

UVM Parameterized DUT Interface - Advanced dut_max_if Technique
e DUT Max Interface Technique - simplifies testing of parameterized designs
dut max if/ dut_if - connecting different bus sizes
Bind dut if inside of DUT
max_defines.sv file
DUT information struct: dut_info s
Port coercion
Trick to set proper printing widths
LAB: UVM parameterized DUT-Max interface (Full UVM self-checking testbench)



Advanced Reactive Stimulus Techniques Using the Monitor and uvm_tlm_analysis_fifo
Includes materials from Cliff's DVCon 2021 award-winning paper on Advanced Reactive Stimulus.

Sampling the stimulus response from the same agent

Sampling the stimulus response from a 2nd agent

Two additional reactive stimulus techniques

uvm_tlm_analysis_fifo in the environment

Base sequence using blocking-get to retrieve output sequence from uvm_tlm_analysis_fifo
Base sequence triggers a response event

Using pre_start() -vs- pre_body() method

Second technique using config objects and a virtual sequencer

LAB: Multi-agent reactive stimulus testbench (Full UVM self-checking testbench)

Additional Advanced Techniques

SystemVerilog-2012 interface classes

DUT error injection without recompiling the DUT

DUT error injection using bindfile-force technique

Multi-agent packet example

LAB: DUT error injection using bindfile (Full UVM self-checking testbench)
LAB: Multi-agent packet example (Full UVM self-checking testbench)

Review of Clocking Blocks & Verification Timing
Includes materials from Cliff's SNUG 2016 paper on UVM verification timing techniques.

Testbench stimulus/verification vector timing strategies

#1step sampling

Clocking blocks

Clocking skews

UVM usage of clocking blocks in an interface

UVM driver timing using clocking blocks

UVM signal sampling using clocking blocks

3 important timing techniques (#1 - applying stimulus, #2 & #3 sampling for verification)
LABS - All of the full UVM self-checking labs use these clocking block techniques

Review of UVM Factory Overrides
Includes materials from Cliff's SNUG 2012 paper on the UVM factory and overrides.

Introduction to factory overrides
Review of factory override by _type
Review of factory override by _inst



