
 
Sunburst Design - Universal Verification Methodology 

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.  
4 Days 
70% Lecture, 30% Lab 
 
Prerequisites (mandatory) - This is an advanced verification course that assumes engineers already 
have a good working knowledge of both Verilog & SystemVerilog.  
 

Course Syllabus 
(~10 minute breaks near the top of each hour) 

(Lab time is scheduled for "Lunch & Lab" and again near the end of the day) 
This course may be customized by client companies on a WebEx conference call with Cliff Cummings. 
  
Day One 
UVM Resources & Introduction 
 
Classes & Class Variables 

• Intro to OOP using classes 
• Class handles & null handles 
• Garbage collection 
• Built-in & user-defined constructors 
• Classes & class extension (inheritance) 
• this & super keywords & usage 
• Methods & method extension 
• Up-casting and down-casting (used extensively in verification environments) 
• Local & protected (hiding) 
• Static class methods 
• Extern methods 
• Singleton pattern and usage 

 
UVM Overview First Pass & uvmtb_template files  
Each of the concepts in this section will be taught a second time with greater detail in later sections.  

• Overview of UVM component & transaction classes 
• Basic top module with DUT, dut_if and UVM testbench classes 
• Overview of UVM tests & testbench components 
• Driver converts transactions into timed "pin-wiggles" and drives them to the dut_if 
• Monitor samples dut_if "pin-wiggles" and converts them back into a transaction 
• Scoreboard predict, compare and report 
• Basic UVM display commands 
• Running UVM tests 



• UVM phases - top-down & bottom-up - first pass 
• Phase names match method names 
• UVM starting & stopping tests - raised & dropped objections 
• uvmtb_template files used as a starting point for all UVM testbench development 
• LAB - UVM Common Errors 
• LAB - UVM First Testbench - Testing a Counter (Full UVM self-checking testbench #1) 

 
Virtual Classes, Virtual Methods and Virtual Interfaces 
Includes materials from Cliff's SNUG 2018 & SNUG 2009 award-winning papers on virtual classes, 
methods, interfaces. 

• Virtual classes (abstract classes) 
• Virtual methods 
• Overriding virtual methods - polymorphism 
• Pure virtual methods 
• Virtual interfaces 
• 3 requirements for virtual interface usage 
• Tying module ports to virtual interfaces 
• Passing virtual interface handles through class constructors 
• (UVM only) storing virtual interface handles into a database 
• Static interfaces -vs- virtual interfaces 

 
Introduction to Constrained Random Testing  

• Directed -vs- random testing 
• rand & randc class variables 
• pre_randomize(), randomize() & post_randomize() class methods 
• randomize … with 
• rand_mode() 
• randcase usage for classes and procedural code 
• Constraints 
• Using inside & dist keywords 

 
Introduction to Functional Coverage 

• Covergroups 
• Coverpoints 
• Coverpoint bins & auto-bins 
• Cross-coverage 
• Covergroup sampling techniques 
• LABS - Random Variables & Randomization (Full UVM self-checking testbenches #2-3) 
• LAB - Constrained Random Stimulus (Full UVM self-checking testbench #4) 

 
UVM Base Classes & Reporting (UVM print/display commands) 
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM messaging. 

• UVM messaging methods 
• UVM messaging macros 
• convert2string() 
• UVM verbosities 



• UVM verbosity usage guidelines 
• LAB - UVM Messaging 

 
Day Two 
UVM Transaction Base Classes, Sequences & Tests 
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM transactions. 

• Dynamic arrays 
• Associative arrays 
• Why classes -vs- structs? 
• `uvm_object_utils macros 
• Standard transaction methods 
• do_copy, do_compare and other do_methods 
• Field macros 
• Randomizable data members 
• Randomizable knobs 
• Randomization constraints 
• UVM sequence body task  
• start_item(tx) - finish_item(tx) 
• `uvm_do macros 
• randomize() the transaction 
• randomize() the transaction with inline constraints 
• UVM sequences of uvm_sequence_item and uvm_sequence 
• Running UVM tests 

 
Top Module, DUT and Config Storage Techniques 

• Top module 
• DUT (Design Under Test) 
• DUT Interface 
• Connecting DUT to DUT interface 
• DUT interface handle 
• uvm_config_db#(type) set/get (newer database commands) 
• uvm_resource_db#(type) set/read_by_name/read_by_type (newer database commands) 
• set_config_* / get_config_* (older storage commands) 
• Virtual interfaces for verification 
• LAB - UVM Agent (Sqr-Drv-Mon) (Full UVM self-checking testbench #5) 

 
UVM Testbench Environment / Agent / Sequencer / Driver / Monitor 
Includes materials from Cliff's SNUG 2018 award-winning paper on UVM analysis ports. 

• `uvm_component_utils macros 
• UVM components connected through ports & exports 
• Testbench driver (get-port configuration) 
• Managing the virtual interface - config table - required dynamic casting 
• Testbench sequencer (get-export configuration) 
• Testbench agent & environment 
• Active and passive agents 
• UVM analysis ports 



• Analysis port broadcast command 
• UVM monitors with analysis ports 
• uvm_subscriber with analysis export 
• Connecting a coverage collector using an analysis export 
• LAB – FIFO Gray Code Pointer - (Full UVM self-checking testbench #6) 

 
UVM Scoreboards - Part I 
Includes materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures. 

• SystemVerilog queues 
• SystemVerilog mailboxes 
• uvm_tlm_fifo 
• uvm_tlm_analysis_fifo 
• What is the job of the scoreboard 
• Scoreboard architecture style #1 
• Pre-coded scoreboard wrapper and predictor 
• Extern calc_exp function - requires user to complete this function 
• Pre-coded comparator with 2 uvm_tlm_analysis_fifos 
• LAB – UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab #7) 
• LAB – UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab #8) 

 
Day Three 
UVM Scoreboards - Part II 
Includes more materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures. 

• Scoreboard architecture style #2 
• Multiple analysis implementation ports 
• `uvm_analysis_imp_decl macros 
• LAB – UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab #9) 

 
Fork-Join Enhancements & Advanced UVM Sequence Generation 
Includes materials from Cliff's DVCon 2016 paper on UVM virtual sequences. 

• New SystemVerilog fork-join processes 
• UVM virtual sequences 
• Virtual sequencers & virtual sequences - requirements 
• m_sequencer, p_sequencer, `uvm_declare_p_sequencer 
• Virtual sequence base class details 
• Common test_base 
• Starting virtual sequences 
• Multi-bus virtual sequencer example 
• LAB - Virtual Sequencer & Sequences 

 
Clocking Blocks & Verification Timing 
Includes materials from Cliff's SNUG 2016 paper on UVM verification timing techniques. 

• Testbench stimulus/verification vector timing strategies 
• #1step sampling 
• Clocking blocks 
• Clocking skews 



• Default clocking block cycles 
• Clocking block scheduling 
• UVM usage of clocking blocks in an interface 
• UVM driver timing using clocking blocks 
• UVM signal sampling using clocking blocks 
• LABS - All of the self-checking labs use these clocking block techniques 

 
Transaction Level Modeling (TLM) Basics 

• TLM ports & exports 
• Why "ports" and "exports" 
• TLM put, get and transport configurations 
• Transaction-level control flow / data flow / transaction type 
• Put configurations 
• Get configurations 
• Transport configurations 

 
UVM Factory & Constructors 
Includes materials from Cliff's SNUG 2012 paper on the UVM factory and overrides. 

• UVM factory basics 
• Why is a factory used in UVM 
• What is needed to use the factory 
• new() -vs- type_id::create() construction 
• Component and data lookup from the factory 
• Running without re-compilation 
• Tests can make substitutions without changing the testbench source code 
• Introduction to factory overrides 

 
Day Four 
Constrained Random Testing and Functional Coverage Part II 

• Code coverage -vs- functional coverage 
• Covergroups & coverpoints - part 2 
• Auto-bins & user-named bins 
• Cross coverage 
• Covergroup.sample() method 
• Transition bins 
• Coverage options & coverage capabilities 
• Comparing cover to covergroup coverage 
• LAB – UVM Functional Coverage - (Full UVM testbench lab #10) 

 
UVM Register Abstraction Layer (RAL) 

• Register package resources 
• Why use the register package? 
• Register models & memories 
• Register model definition: fields / registers / blocks / maps 
• Register adapter & methods - derivative of uvm_object 



• Register model - derivative of uvm_component 
• Setting the model sequencer handle 
• Predictor - derivative of uvm_component 
• The RAL API 
• Built-In register sequences 
• uvm_reg_mem_built_in_seq type & handle declaration 
• Setting the seq.model & seq.tests 
• Executing the seq.start(null) 
• LABS – UVM 4-Register Design (no RAL) - (Full UVM testbench lab #11) 
• LABS – UVMREG 4-Register Design (using RAL) - (Full UVM testbench lab #12) 

 


