—

e
—Sunburst Design_
~—

World Class SystemVerilog & UVM Training

Sunburst Design - UVM Training
by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

NOTE from CIiff Cummings:

UVM is VERY DIFFICULT to learn on your own with self-paced training. | know, | tried!!

Some engineers are tempted to skip this course and go straight to the Advanced UVM Training
course offering. For many engineers, this is a mistake! Engineers who have taken SystemVerilog
for Verification training are prepared for UVM training but not Advanced UVM training.

I have not found any good UVM book that properly and adequately teaches UVM for beginners.
Most books assume that the reader is already an expert at SystemVerilog, Object Orient
Programing (OOP) and Polymorphism before they start to read the books. Most books do not
explain why UVM works the way it does. They just teach engineers to copy a pattern, which is a
recipe for failure.

The title of this course is deceiving. Although the course title frequently includes either
"Standard" or "Fundamentals,” this UVM training is fast paced and advanced. Just a few weeks
ago | had a student take this training who had already taken other UVM training. At the end of
the course she commented that she now understood how UVM works and how to use it properly.

To take Advanced UVM training, engineers should either first take this training course, or should
have two years of UVM Verification Experience. | have taught this UVM training course to
engineers who have done UVM verification for multiple projects and claimed to have understood
SystemVerilog classes and Object Oriented Programming. These are the engineers that ask the
most questions in this training class because they can finally get answers to how and why
SystemVerilog and UVM behave the way they do.

UVM topics need to be taught multiple times to understand how they work. That is why this
course requires students to start doing full, self-checking UVM testbenches on the first day of
class and includes 10 full self-checking labs among the 13 labs included in the course. The goal
is to gain experience building and simulating multiple full, self-checking UVM testbenches.

If you are new to UVM or have less than 2 years of UVM experience with no formal UVM
training, this is the course you should take.

This is the course | wish I could have taken when | was learning UVM!

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

Course Syllabus
All scheduled times are estimates only and adjusted for Irish Training sessions
~10 minute breaks near the top of each hour
(Lab time is scheduled for **Lunch & Lab™ and near the end of the day)

Day One

UVM Resources & Introduction (Includes class introductions — 11:00-11:15 am)

Section Objective: Share UVM resources - There are conflicting guidelines from multiple
resources regarding UVM methodologies. When one understands why there are differences, it is
easier to learn from the divergent resources. This section explains the rationale behind the
differing resources.

e UVM resources
e UVM introduction
e UVM conflicting recommendations - why?

(1) Classes & Class Variables (11:15 am —12:15 pm -

part of this section will be moved to after lunch)
Section Objective: Learn class basics - UVM is a class library used to construct powerful
verification environments. Class fundamentals are described in this section.

SystemVerilog class basics

e Traditional Object Oriented (OO) programming -vs- SystemVerilog Classes
e Class definition & declaration

e Class members (data) & methods (tasks & functions)

e Class handles & using class handles

e Built-in class object constructor - new()

e super & this keywords

e Assigning object handles

e User-defined constructors

e Class extension & inheritance

e Class extension - adding properties & methods

e Class extension - overriding base class methods

e Assigning class handles

e Assigning extended handles to base handles

e Casting base handles to extended handles (technique used by UVM)
e Chaining new() constructors - illegal new() constructors

e Overriding class methods

e Extending class methods

e Extern methods

e Static methods

e local & protected keywords

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

(2) UVM Overview First Pass & uvmtb_template files (12:15 pm — 1:00 pm)

Must complete this section before lunch to build the first full UVM testbench during lunch
Section Objective: Learn fundamentals of UVM testbench development and execution. This
section briefly introduces important UVM fundamentals followed by a lab to help students with
first-pass familiarity and introduction to UVM testbench development. Students will not fully
understand all of the section concepts while creating the first UVM testbench, but it is important
that students do the lab to build a foundation for later learning. Each of the concepts in this
section will be taught a second time with greater detail in later sections. Engineers will learn
more quickly after they have experienced the lab techniques at least once before exploring
advanced UVM concepts. This section also introduces the uvmtb_template files for rapid UVM
testbench development.

e UVM transactions (data)
Components (testbench components)
Display command
Top module DUT, interface, interface wrapper
Testbench classes: environment, sequencer, driver, monitor, virtual interface
Test classes
Running tests using +UVM_TESTNAME command line switch
Stopping tests using raised & dropped objections
uvmtb_template files
The 8 template files that require modification for simple block-level verification
LAB - UVM Common Errors
LAB - UVM First Testbench - Testing a Counter (Full UVM self-checking testbench #1)

(LUNCH & LAB: 1:00 — 2:00 pm)

(1 - cont.) Complete section 1. (~2:00 — 2:30 pm)
(3) Virtual Classes, Virtual Methods and Virtual Interfaces (~2:30 — 3:30 pm)
Section Objective: Learn fundamentals of virtual classes/methods/interfaces - Virtual classes
enable the creation of a set of base classes that provide a template for advanced verification
environments. UVM is a base class library made up of mostly virtual classes that the user
extends to create a reusable testbench environment. Virtual methods allow run-time base-method
replacement that is a vital part of the UVM strategy (polymorphism).
e Introduction to Virtual - three types of "virtual”
Virtual/abstract classes
Legal & illegal virtual class usage
Virtual class methods & restrictions
Virtual Methods and rules
Virtual -vs- non-virtual method override rules
Why use virtual methods?
Polymorphism using virtual methods
Pure virtual methods (SystemVerilog-2009 update - used by UVM)
Interfaces and virtual interfaces for UVM testbench development
Passing type parameters

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

(4) Constrained Random Testing and Functional Coverage Part | (~3:30 —4:30 pm)
Section Objective: Introduction to class variable randomization and setting randomization
constraints - UVM uses classes and constrained random variables for the construction of
constrained random testing environments. Introduction to functional coverage including
covergroups and coverpoints. An introduction to constrained random testing and functional
coverage are described in this section.

Directed -vs- random testing

rand & randc class variables

randomize() method - Randomizing class variables
pre_randomize()/post_randomize() methods

randomize ... with

rand_mode()

Randomization constraints

Simple constraints

Constraints blocks

Important constraint rules

Constraint distribution & set membership - dist & inside

e Constraint distribution operators

e External constraints & usage rules

e LAB - Random Variables & Randomization (Full UVM self-checking testbenches #2-3)
e LAB - Constrained Random Stimulus (Full UVM self-checking testbench #4)

(5) UVM Base Classes & Reporting (UVM print/display commands) (~4:30 — 5:30 pm)
Section Objective: Learn about UVM base classes and basic display and reporting commands.
3-day class includes introduction to SystemVerilog dynamic & associative arrays.

e SystemVerilog dynamic arrays

SystemVerilog associative arrays

UVM Base Classes

Introduction to UVM core base classes, "include files and macros

Block diagram of DUT-testbench structure

UVM verification components

UVM components and objects

UVM transactions (passing UVM data & methods - dynamic class objects)
UVM factory basics

Reporting methods & arguments

Reporting macros and why they are preferred

UVM_VERBOSITY explained

Why the UVM User Guide, Reference Manual and Books get VERBOSITY wrong!
LAB - UVM Messaging

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

Day Two

(6) UVM Transaction Base Classes, Sequences & Tests (11:00 am — 1:00 pm)

Section Objective: Learn to use and manipulate UVM transactions. This section shows why
transactions are classes and not structs. This section also shows the two common techniques to
define standard transaction methods, as well as the two common techniques to execute
transactions and sequences, along with pros, cons and benchmarks of each method. This
section then shows techniques to define and run sequences and tests.

Why classes -vs- structs?

Dynamic transaction classes

‘uvm_object_utils macro

uvm_sequence_item -vs- uvm_transaction
Standard transaction methods

do_copy, do_compare and other do_methods
Field macros

Randomizable data members

Randomizable knobs

Randomization constraints

uvm_object constructors

UVM sequence body task

start_item(tx) - finish_item(tx)

“uvm_do macros

randomize() the transaction

randomize() the transaction with inline constraints
UVM sequences of uvm_sequence_item and uvm_sequence
Running UVM tests

(LUNCH & LAB: 1:00 — 2:00 pm)

(7) Top Module & DUT (2:00 — 3:00 pm)

Section Objective: Learn how to connect a UVM class-based testbench to an actual Design
Under Test (DUT) - This section explains the role that interfaces, virtual interfaces,
configuration tables and the UVM configuration database play in a testbench environment.

Top module

DUT (Design Under Test)

DUT Interface

Connecting DUT to DUT interface

DUT interface handle

uvm_config_db#(type) set/get (new/easier method to store the DUT interface handle)
Configuration tables

set/get_config_object (old method to store the DUT interface handle)

Virtual interfaces for verification

LAB - UVM Agent (Sgr-Drv-Mon) (Full UVM self-checking testbench #5)

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com

Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

(8) UVM Testbench Agent — Sequencer / Driver / Monitor (3:00 — 4:30 pm)

Section Objective: 3/4-day class includes introduction to SystemVerilog queues. Learn to use
UVM environments, agents, sequencers, drivers, and monitors - Setting up the driver is a critical
step. The class-based driver must drive the module-based DUT through a virtual interface that
drives a real interface. UVM uses monitors to sample DUT signals through the virtual interface
and captures the transaction that is then broadcast through an analysis port to a scoreboard and
coverage collector.

UVM components to build the testbench structure

UVM testbench structure (quasi-static class objects)
“uvm_component_utils macros

uvm_component constructors

UVM components connected through ports & exports

Testbench driver (get-port configuration)

Managing the virtual interface - config table - required dynamic casting
Testbench sequencer (get-export configuration)

Testbench agent & environment

User-defined testbench package

UVM analysis ports

Analysis port broadcast command

UVM monitors with analysis ports

UVM agents with analysis ports

Active and passive agents

uvm_subscriber with analysis export

Connecting a coverage collector using an analysis export

e LAB - FIFO Gray Code Pointer - (Full UVM self-checking testbench #6)

(9) UVM Scoreboards - Part I (4:30 — 5:45 pm)

Section Objective: This section starts off with a tutorial about SystemVerilog queues &
mailboxes, then describes the uvm_tlm_fifos and how they are used. Next, learn the first
scoreboard technique uses pre-coded scoreboard wrapper, predictor with extern calc-expected
function, and pre-coded comparator with 2 uvm_tlm_analysis_fifos. The first technique only
requires completion of the extern calc_expected function.

SystemVerilog queues & mailboxes

uvm_tim_fifo & uvm_tIm_analysis_fifo

What is the job of the scoreboard

Scoreboard architecture #1

Pre-coded scoreboard wrapper and predictor

Extern calc_exp function - requires user to complete this function

Pre-coded comparator with 2 uvm_tlm_analysis_fifos

LAB — UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab #7)
LAB — UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab #8)

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

Day Three

(10) UVM Scoreboards - Part 11 (11:00 - 11;45 am)

Section Objective: Learn the second scoreboard technique, which is commonly shown in
literature and uses 2 uvm_analysis_imp_ports and 2 uvm_tlm_fifos. the second technique
requires the use of special macros to allow using two analysis imp ports on a common
component.

Scoreboard architecture #2

Multiple analysis implementation ports

“uvm_analysis_imp_decl macros

Full scoreboard style #2 code and description.

LAB — UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab #9)

(11) Fork-Join Enhancements & UVM Virtual Sequence Generation (11:45 am — 1:00 pm)
Section Objective: Learn advanced sequence generation techniques - New fork-join capabilities
were added to SystemVerilog and they are commonly used by advanced UVM sequence
generation environments.

New SystemVerilog fork-join processes

UVM virtual sequences

Virtual sequencers & virtual sequences requirements
m_sequencer, p_sequencer, ‘uvm_declare_p_sequencer
Virtual sequence base class details

Common test_base

Starting virtual sequences

Multi-bus virtual sequencer example

LAB - Virtual Sequencer & Sequences

(LUNCH & LAB: 1:00 — 2:00 pm)

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com

Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

(12) Clocking Blocks and Verification Timing (2:00 — 3:00 pm)
Section Objective: Learn important stimulus and verification timing issues and techniques -
SystemVerilog clocking blocks help control timing for UVM verification environments.

Testbench stimulus/verification vector timing strategies
#1step sampling

Clocking blocks

Clocking skews

Default clocking block cycles

Clocking block scheduling

UVM usage of clocking blocks in an interface

UVM driver timing using clocking blocks

UVM signal sampling using clocking blocks

(13) Transaction Level Modeling (TLM) Basics & UVM Factory & Constructors

(3:00 — 3:45 pm)

Section Objective: Transaction Level Modeling (TLM) is taught after it has been used the first
two days of UVM training. This section shows how transactions are passed between classes
through ports, exports, put-configurations, get-configurations and transport configurations.

TLM ports & exports

Why "ports” and "exports”

TLM put, get and transport configurations
Transaction-level control flow
Transaction-level data flow
Transaction-level transaction type

Put configurations

Get configurations

Transport configurations

(14) UVM Factory, Constructors & Factory Overrides (3:45 — 4:30 pm)

Section Objective: Learn the basics of UVM factories, registration, class construction and
introduce the concept of factory overrides. This section will show why factories are important to
UVM testbenches and describe differences between new() -vs- type_id::create() methods.

UVM factory basics

Why is a factory used in UVM

What is needed to use the factory

new() -vs- type_id::create() construction

Component and data lookup from the factory

Running without re-compilation

Tests can make substitutions without changing the testbench source code
e Introduction to factory overrides

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

(15) Constrained Random Testing and Functional Coverage Part 11 (4:30 — 5:30 pm)
Section Objective: Learn functional coverage fundamentals - Functional coverage is used to
track what has been tested. Functional coverage is used to help answer the question, "are we
done testing?" This section includes cover statements & compares them to covergroup coverage.

Code coverage -vs- functional coverage

Covergroups & coverpoints

Auto-bins & user-named bins

User-named array of bins

Cross coverage

Covergroup.sample() method

Transition bins

Coverage options & coverage capabilities

Comparing cover to covergroup coverage

LAB — UVM Functional Coverage - (Full UVM testbench lab #10)

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

APPENDIX
Why are OVM & UVM hard to learn?

Many engineers believe they can learn UVM by picking up and reading a book and the OVM or UVM
User Guide. They quickly discover this is exceptionally difficult to do. Why is it so hard to learn UVM
from existing materials?

Through years of experience, Sunburst Design has identified the following reasons why engineers
struggle with existing UVM tutorial materials:

1) The OVM User Guide was written by Cadence and teaches Cadence recommended methods, which
includes the use of a large number of OVM macros.

2) The OVM tutorials on VerificationAcademy.org are shown using Mentor recommended methods,
which includes the use of fewer OVM macros and more OVM method calls.

3) The OVM Cookbook was written by Mentor employees and is based on an earlier version of OVM
(the latest techniques are not shown in the book).

4) The above User Guide, tutorials and Cookbook do not acknowledge or explain the alternate methods,
so users are left to draw erroneous conclusions that some of the methods shown are flawed, which is
not true. Learners need to be taught the pros and cons of the alternate methods so that they understand
why there are differences in the various methods presented.

5) All the people who have written OVM materials are really, really smart software engineers who
assume that engineers already understand SystemVerilog syntax and semantics, object oriented
programming and polymorphism semantics, and they don't know how teach these concepts to
beginners.

6) Many of those who have written OVM materials are software engineers who do not have a strong
grasp of good hardware design practices, and it shows in many of the examples.

7) The OVM User Guide (chapter 2) and the OVM Cookbook (chapter 3) introduce Transaction Level
Modeling (TLM) concepts, including put, get and transport communication, but do a poor job of tying
the concepts into the rest of the OVM materials. Engineers often wonder why TLM was introduced in
these texts.

8) All OVM materials show the driver on the right and the monitor on the left (right to left data-flow
inside of the agent). This contradicts known good hardware block diagramming methods (data should
flow from left to right in block diagrams) and adds an unnecessary level of confusion to the learning
process for those who are familiar with good block diagramming techniques.

9) There is a huge shortage of complete simple examples. Most of the publicly available example code is
in abbreviated code-snippet form, leaving the new user to guess what is missing. Finding full
examples in the materials is rare. One notable example shows OVM used on a large VHDL design,
which introduces yet another unknown to the learning process.

10) Of course, you must understand classes, class-extension, virtual classes, virtual methods, dynamic
casting, polymorphism, randomization, constraints, covergroups, coverpoints, interfaces and virtual
interfaces before you can learn OVM. Too many engineers try to learn OVM without a full
understanding of these SystemVerilog fundamentals (this is not the fault of OVM authors).

11) Classes are applied as stimulus and sampled for verification. Existing materials do not explain why
classes are used instead of structs?

12) Interfaces, virtual interfaces and their recommend usage-models are somewhat buried in the materials
and are poorly explained (most authors assume you understand these concepts without much
explanation - they are wrong).

13) There are a significant number of typos and mistakes sprinkled throughout the materials and
examples. The mistakes leave the learner to try to figure out which coding styles are correct and
which have typos.

Sunburst Design UVM training addresses each of these issues.

Rev 202005 - © Sunburst Design, Inc. - www.sunburst-design.com
Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes and scheduling, email Tom Wille: tw@tm-associates.com

